
RAPID: A Free, Portable GUI Design Tool
Martin C. Carlisle

Department of Computer Science
2354 Fairchild Dr., Suite 6K41

US Air Force Academy, CO 80840-6234
(719) 333-3590

mcc@cs.usafa.af.mil

Patrick Maes
Department of Computer Science

2354 Fairchild Dr., Suite 6K41
US Air Force Academy, CO 80840-6234

(719) 333-3590

MaesPJ.DFCS@usafa.af.mil

1. ABSTRACT
In this paper, we describe RAPID, the Rapid
Ada Portable Interface Designer. RAPID is a
graphical GUI design tool that allows the user
to visually lay out a user interface, and have
the Ada code that creates this interface
generated automatically. The generated code
will run on any platform supported by Tcl/Tk.
1.1 Keywords
Graphical user interfaces, automatic code generation,
Tcl/Tk, Ada

2. INTRODUCTION
More and more, computer programs are becoming
increasingly visual. Unfortunately, graphical interface
programming tends to be both highly complicated and
system dependent. Various languages and graphical user
interface (GUI) design tools have been developed to
simpli fy this process. RAPID (the Rapid Ada Portable
Interface Designer) is the first free, multi -platform, GUI
design tool written entirely in and for Ada. By using the
RAPID toolset, the programmer can quickly lay out a user
interface through a visual design process, then have the
toolset automaticall y generate Ada code that will create
that interface.

Since multi -platform graphical languages already exist, we
decided to leverage off what had already been done, rather
than implementing a new set of graphical primiti ves from
scratch on several platforms. The two most promising
choices were Java [6] and Tcl/Tk [7]. Java has sparked an

enormous amount of interest both at universities and in

industry. The executables created by a Java compiler can
be run (interpreted) on many different platforms. Java also
provides significant graphical primiti ves. For these
reasons, many have predicted Java will become the
preeminent programming language. In response, the Ada
community has targetted compilers to the Java Virtual
Machine [2,4]. These compilers allow the programmer to
utili ze the functionalit y of the JVM while still retaining
the advantages of programming in Ada. Tcl/Tk is
available for free on a wide variety of platforms, provides
native “look and feel” GUI tools, and is a more mature and
stable technology. Since Tcl is a scripting language, it is
much easier to test Tcl programs than programs written in
a compiled language such as Java. Additionally, the
existence of TASH [10], a straight-forward Ada binding to
Tcl/Tk, makes it an attractive alternative for Ada
programmers. The ease of using Tcl/Tk and TASH led us
to choose them as the target for our GUI design tool.

In addition to selecting an existing graphical language, we
also borrowed ideas from compilers that enabled us to
develop the tool much more quickly, and also to make it
much easier to switch the type of code that is output.
Section 3 will discuss the toolset, and the features it
provides. In Section 4, we describe the development of a
simple application using RAPID. Section 5 describes our
use of an intermediate language and bootstrapping.
Bootstrapping allowed us to generate over 40% of the
RAPID code using RAPID itself. A description of how to
add new widgets to RAPID is given in Section 6. Finall y,
in Section 7, we will contrast RAPID with similar work,
and provide ideas for further development.

3. THE RAPID TOOLSET
The RAPID toolset consists of 3 programs: RAPID,
TASH_FROM_GIF, and CALLED_FROM_TCL. RAPID
is the main GUI Designer, which allows the programmer
to visually lay out a graphical user interface and have the
Ada code for that interface generated automaticall y.
TASH_FROM_GIF allows the programmer to embed GIF
images in the code without requiring any external files.
CALLED_FROM_TCL is used to generate code that will
allow an Ada procedure to be used as a callback on a
generated event.

Many widgets have actions associated with them. For
example, the programmer may want a certain procedure to
be called if a button is pressed. Since the button is
implemented using Tcl/Tk primiti ves, this requires the use
of a callback procedure. Registering the callback with Tcl
is done automaticall y for certain events (such as a button
push); however, the programmer may wish to add
additional event handlers (e.g. a procedure to be called
whenever the mouse enters the window). The syntax for
these event handlers is relatively awkward, requiring the
use of the package Interfaces.C and the Convention
pragma. Additionally, all data in Tcl/Tk is stored as a text
string. On the callback, this data would need to be
converted from a C-style string to the appropriate Ada
type. CALLED_FROM_TCL simpli fies the programmer’s
task by automaticall y generating the appropriate code to
register the callback and do the necessary conversions.
Given an input file consisting of Tcl name, Ada command,
and argument count triplets, CALLED_FROM_TCL will
create an Ada package consisting of functions to serve as
intermediaries for the callback, and an exported procedure
Generate_Bindings, that, when called, will register these
intermediaries.

Figure 1: The main RAPID window.

Figure 1 shows the main window for RAPID. The first
row of buttons allows the user to create a new window,
open a previous window, save the current window, start
the menu editor, or compile the GUI to Ada code. The
second row of buttons is used to select what type of widget
will be added (currently only text labels, text buttons,
picture buttons, text-entry widgets, radio buttons and check
boxes are supported, though more are being added.
Section 6 describes how you can add your own widgets).
After selecting “new” or opening a file, the user can use
the left mouse button to cli ck and drag out a new widget
(as shown in Figure 1).

When the user releases the left mouse button, a dialog box
appears that asks the user to fill i n the properties of the
new widget. Figure 2 shows an example properties dialog
box for a text button. Once this has been fill ed in, the user
can recall this dialog and change the properties of the
widget by cli cking on it with the right mouse button. In
the dialog shown, the location and size of the text button
have been automaticall y fill ed in, based on the rectangle
that was drawn by the user. For this particular widget, the
user must specify its name, the text that will appear on the
button, and its action (which Ada procedure will be called
when the button is pushed). The action should be a full y
quali fied Ada procedure name (e.g.
Edit_Menu.Cut_Choice).

Figure 2: The properties dialog for a text button

For a picture button, the “Text” field would be replaced by
a “Picture” field, which would be the name of the GIF file
containing the image. A text label widget has the same
fields except there is no action. The text entry widget has
an action (for when the user presses enter), but no text.

Using the menu editor button from the main toolbar, the
user can start the RAPID menu editor. This visual
interface is modeled after a Windows-based file browser.

Indentation indicates nested items. From this window, the
user can insert or delete menu items. An inserted menu
item will immediately follow the selected item. Since
menus can be nested, this creates some ambiguity. If a
submenu is highlighted, should the insertion occur at the
same level, or one level deeper? To resolve this ambiguity,
each submenu has a symbol to its left indicating whether
or not an insertion will occur one level deeper (“>”), or at
the same level (“ |”). In Figure 3, if the user selects “ Insert
Choice” with “File” selected, the item will be placed on
the same level, just before “Edit” . Were “Edit”
highlighted, the insertion would occur as an item in the
“Edit” menu, just before “Cut” . The user can toggle which
type of insertion will occur by cli cking on the symbol.

Figure 3: The RAPID menu editor

When the user opts to insert a menu or choice, a dialog
(similar to the one in Figure 4) will pop up, asking the
user to specify the text of the menu choice, which
character is the shortcut (this character will be underlined
when the menu is displayed), if there is a keyboard
shortcut (such as Ctrl+X), and what Ada procedure should
be called when this item is selected. When the user closes
the menu editor, the menu will be updated and
redisplayed.

Figure 4: Inserting a menu choice

The RAPID GUI designer allows users to generate a
simple graphical user interface without any knowledge of
Tcl/Tk programming. Once they are pleased with their
design, pushing the compile button will generate all of the
necessary Ada code (using Tcl/Tk via the TASH binding)
to display the interface, and handle all of the events.

4. BUILDING A GUI WITH RAPID
In this section, we describe the development of a sample
application using the RAPID toolset. The example we
chose was a sorting demonstration that would sort data (in-
order, reverse, or random) with various sorting techniques
and report the elapsed time of the sort. To demonstrate all
of the available widgets, some redundancy was deliberately
added to the design.

The parameters for the sort include the type of sort,
original order of data, and order of the result. The type of
sort was most readily represented by a radio button, and
the order of result by a check box. To demonstrate the
menu, we also allowed selection of both the type of sort
and order from the menu. Starting the sort may be done
by using a text button, picture button, or from the menu.
The user can terminate the application using either a text
button or menu choice. Figure 5 shows the main RAPID
window at the completion of the design process.

Figure 5: Sort demo main window

Neither the radio buttons nor the checkbox has an action
associated with it. Instead, the values of these widgets are
read when the user selects “Go!! ” . For example, to read
the value of “Sort Descending” , the following line of code
is used:

Checked := Tcl_Utilities.Is_Checked (

 Main.Interp, "descending");

Since the radio buttons are grouped, the autogenerated
code is more complicated. When laying out the radio
buttons, the programmer specifies a group for each. In the
widgets package for the main window, for each group, an
enumerated type is automaticall y created and the
procedure Read_Group can then be used to read which
choice was selected. Since Ada is strongly typed, this
procedure can be overloaded for each group of radio
buttons. Following is the line of code used to determine
which type of sort was selected (since the variable
Which_Sort is declared to be of the appropriate type, the
correct Read_Group function is chosen) :

Which_Sort := Main_Widgets. Read_Group (

 Main.I nterp);

The menus duplicate functionalit y already present in the
buttons. Selecting a menu choice should then update the
radio buttons and check box as appropriate. The utiliti es
package also provides routines for accomplishing this. A
sample from the application is given below:

Tcl_Utilities.Deselect_Box(Main.Interp,

 "." , "descending");

For each of the buttons, a full y-quali fied Ada procedure
name is specified. This procedure is the action that will be
performed when that button is pushed. The procedure
should be parameterless. Currently, RAPID will only
generate a with clause based on the procedure name, and
not examine any arguments. This is not a limitation, as
any state needed could be kept in package variables. Also,
in this case, the procedure obtains the information it needs
by querying the widgets.

Figure 6: Sort demo data type window

After the user starts the sort, a new dialog appears to ask
for information about the data to be sorted. Both the type
of data to be sorted and the number of items to sort are
entered from this screen.

Figure 6 shows this window. Again a radio button group
is used to select the type of data to be sorted. A text-entry
widget is used to enter the number of items to sort. Text-
entry boxes are also allowed to perform an action when the
user presses <Enter>. In this case, we chose to have this
action be the same as if they pressed the “Sort ‘Em!! ”
button.

Once the user selects “Sort ‘Em!! ” , the application will
determine what was selected and then perform the
operation. As before, the radio button group has an
automaticall y generated procedure to read which was
selected. For the text-entry box, the utilit y package
provides a routine for reading the value. An excerpt from
the sort procedure is given below:

Which_Data := Data_Widgets.Read_Group (

 Main.Interp);

Tcl_Uti lities.Get_Text_Entry(

 Main.Interp,

 ".data" , "count" ,

 Data_Count);

Tcl_Utilities.Destroy_Window(

 Main.Interp, ".data");

The menu and screen system described were put together
in one and one-half hours, as well as writing a shell of the
package containing the action procedures. The main
procedure requires only three lines of code, and is given
below. After generating the window, a default value is
given to the radio button group.

with Tcl;

with Tcl.Tk;

with Main;

with Main_Widgets;

procedure Sort_Demo is

begin

 Main.Generate_Window(Main.Interp);

 Main_Widgets.Set_Button (

 Main.Interp, Main_Widgets.Bubble);

 Tcl.Tk.Tk_Mainloop;

end Sort_Demo;

The action package contains the procedures described
above, and also uses procedures from the provided
common dialogs library. The common dialogs library
provides procedures for creating an OK box, a Yes/No
dialog, a file open or save dialog, and a Quit dialog. The
sort demo uses the OK box to display its results and the
Quit dialog to ask if users are sure they want to quit when
quit is chosen from the menu.

Overall , the total time spent on developing the GUI
portion of the application was approximately three hours.

5. RAPID DESIGN PROCESS
A GUI design tool is a suff iciently complex program that
we would li ke some assistance writing it. In particular, the
tool itself has a graphical user interface that could be
designed using a similar tool. Just as Pascal was first
implemented by writing a compiler in Pascal [11], we
decided to use RAPID to develop itself. This “chicken-
and-egg” process is referred to as bootstrapping [1]. The
first step of this process was to develop an intermediate
language for a graphical user interface and the abilit y to
compile this interface to Ada code. Since the intermediate
format chosen was a simple text file (unli ke most
compilers), we were able to write a portion of the GUI
using the intermediate language and then compile it.
After doing that, we were able to repeatedly use the tool to
generate improved versions of itself. Following is a
portion of the grammar used by RAPID:

<window> ::= WINDOW <name> <width>
<height> <menubar> <widgets>
ENDOF WINDOW

<menubar> ::= MENUBAR <menulist> ENDOF
MENUBAR | λ

<menulist> ::= MENU <submenuinfo> <menulist>
ENDOF MENU | ITEM <iteminfo>
<menulist> | λ

<submenuinfo> ::= <name> <underline>
<possible_action>

<possible_action> ::= <action> | λ

<iteminfo> ::= <name> <underline> <action>
<accelerator>

<accelerator> ::= <accel_key> | λ

<widgets> ::= WIDGETS <widgetli st> ENDOF
WIDGETS | λ

<widgetli st> ::= <widget> <widgetli st> | λ

<widget> ::= <picturebutton>|<textbutton>|…

<picturebutton> ::= PICTUREBUTTON <name> <x>
<y> <width> <height> <action>
<picture>

<textbutton> ::= TEXTBUTTON <name> <x> <y>
<width> <height> <action> <text>

Using the above grammar, we wrote the interface for the
main RAPID window directly in the intermediate
language. Below is a portion of the RAPID main window
interface. These 27 lines of the intermediate language
compiled to 506 lines of Ada code. Note that whenever we
provide a line count, it refers to only non-blank, non-
comment lines of code.

WINDOW "." 300 58

MENUBAR

MENU "File" 0

ITEM "New" 0 "File_Menu.New_Choice" Ctrl+N

ITEM "Open" 0 "File_Menu.Open_Choice" Ctrl+O

ITEM "Close" 0 "File_Menu.Close_Choice" Ctrl+F4

ITEM "Save" 0 "File_Menu.Save_Choice" Ctrl+S

ITEM "Save As" 5 "File_Menu.SaveAs_Choice"

ITEM "Exit" 1 "File_Menu.Exit_Choice"

ENDOF MENU

MENU "Tools" 0

ITEM "Compile" 0 "Tools_Menu.Compile_Choice"

ENDOF MENU

ENDOF MENUBAR

WIDGETS

PICTUREBUTTON newButton 0 0 23 23
"File_Menu.New_Choice" "new_gif"

PICTUREBUTTON openButton 23 0 23 23
"File_Menu.Open_Choice" "open_gif"

PICTUREBUTTON saveButton 46 0 23 23
"File_Menu.Save_Choice" "save_gif"

PICTUREBUTTON compileButton 112 0 23 23
"Tools_Menu.Compile_Choice" "compile_gif"

PICTUREBUTTON labelButton 0 25 23 23
"Toolbar.Select_Widget(Toolbar.LABEL)" "label_gif"

PICTUREBUTTON textBButton 23 25 23 23
"Toolbar.Select_Widget(Toolbar.TEXTBUTTON)"
"text_button_gif"

PICTUREBUTTON pictureBButton 46 25 23 23
"Toolbar.Select_Widget(Toolbar.PICTUREBUTTON)"
"picture_button_gif"

PICTUREBUTTON textEntryButton 69 25 23 23
"Toolbar.Select_Widget(Toolbar.TEXTENTRY)"
"text_entry_gif"

PICTUREBUTTON menubutton 79 0 23 23
"Subwindow_Actions.Edit_Menu" "menu_gif"

ENDOF WIDGETS

ENDOF WINDOW

The code length was also reduced using object-oriented
techniques. Each widget is part of a GUI widget
hierarchy. The methods for each widget include: reading
its intermediate form from a file, writing its intermediate
form to a file, generating the code for the widget,
displaying the widget, and running a properties dialog for
the widget. Since different widgets share properties (e.g.
all widgets have a location and size), a particular widget
method can call the same method in its parent class to
perform common functions. For example, the intermediate
form of every widget contains its name followed by its
location. Reading this portion of the widget’s information
in from the file is done in the method for the widget (top-
level) class. Each subclass overrides this method and,
within the method for the subclass, call s the method of its
parent class.

The design of CALLED_FROM_TCL also reduces the
amount of handwritten code. As described in the previous
section, CALLED_FROM_TCL generates an intermediate
function for each callback. Each intermediate function
consists only of a call to the Ada command along with the
appropriate number of arguments. The arguments are
obtained using call s to the overloaded function Argument.
Each Argument function takes in the argument list and the
number and returns that argument, converted to the
appropriate Ada type. By this use of intermediate
functions and overloading, the code for the binding is
independent of the types of arguments. This means that
CALLED_FROM_TCL does not need to do any
complicated parsing of specification files, since the
compiler will do the work of determining which Argument
function should be called for each parameter. As a result,
the CALLED_FROM_TCL tool required only 101 lines of
Ada code for its implementation. In generating the
RAPID GUI Designer, CALLED_FROM_TCL converted a
6 line specification file into 140 lines of Ada code.

Finall y, TASH_FROM_GIF simpli fies incorporating
pictures into the graphical user interface. Starting with a
GIF file, this program first converts the GIF file to base 64
format. Given a base 64 encoding of the image,
TASH_FROM_GIF will create an Ada package with a
single procedure Generate_Image, which loads the image
into the Tcl interpreter. Each 23x23 pixel image for a
RAPID button yielded approximately 38 lines of Ada code.
TASH_FROM_GIF may be used separately if needed, but
is automaticall y called by RAPID for picture buttons.

In combination, these tools automaticall y generated over
2000 of the more than 5000 lines of code in the RAPID
toolset (over 40%). By emphasizing reusabilit y of code

and automatic code generation through bootstrapping, we
were able to develop the tool far faster than if we had used
traditional techniques.

6. ADDING WIDGETS TO RAPID
Because the RAPID source is also distributed as freeware,
the user of RAPID also has the opportunity to add
additional widgets to the tool or increase the functionalit y
of any current widget. As described in the previous
section, this process is simpli fied by using RAPID to
extend itself. In this section, we describe the steps
necessary to add a new widget to RAPID. Since RAPID
uses the TASH binding to Tcl/Tk, it is necessary to have
some understanding of Tcl/Tk programming (see [5], e.g.)

The first step is to add the new widget to the tool bar. To
accomplish this, we run RAPID and open tool.gui, the GUI
specification of RAPID’s main window. We then
duplicate an existing button, change its graphic and action,
and place it on the toolbar. The action for this new button
should open a new dialog box allowing the user to specify
the attributes of the widget. This new dialog can be
designed by copying the dialog of a similar widget, and
modifying it using RAPID.

A new package must be added to the GUI widget class
heirarchy to support the operations on the new widget.
The use of object orientation allows for a lot of code reuse,
and greatly simpli fies this task. As an example, consider
the following code for a check button:

procedure Read_Widget(

 Widget : in out Check_Button;

 File : in Ada.Text_Io.File_Type) is

 Word : Word_Type;

 Last : Natural;

begin -- Read_Widget

 Read_Widget(Gui_Widget(Widget),File);

 File_Helpers.Get_String(File,

 Word,Last);

 Widget. Text := new St ring'(

 Word(1..Last));

end Read_Widget;

Since the check button shares most properties with all
widgets (location, name, etc.), we can call the parent
method, then add the additional value (text). In total,
GUI-Widget-Check_Button.adb required only 101 non-
blank, non-comment lines of code to implement the 8
methods associated with a widget: Read (from a file),
Write (to a file), Generate Ada code, Display, Set
Properties (using the dialog box), Apply Properties (from
the dialog box), Check Properties (to ensure they are

valid), and Dialog Name (return the name of the dialog
box).

Any widget within the Tcl/Tk library can be created, no
matter how complicated. The programmer need only
generate Ada code containing the appropriate Tcl/Tk
script required to create the new widget. Probably the
most counter-intuiti ve part of the task is to keep in mind
that the Generate method consists of Ada code that
produces Ada code. This Ada code must compile without
intervention.

After adding the new widget, several other files must be
edited to handle the new widget. First, GUI_Enum.ads
contains an enumeration type to which the new widget
must be added. Widget_IO.adb must be given visibilit y to
the new widget package by adding a “with” clause. Then,
the case statement in the Read_Widget procedure must be
modified to include the new widget. Also, to keep in line
with the philosophy that the RAPID user should not need
to know Tcl/Tk, appropriate procedures should be added to
the utilit y package to allow the user to manipulate the
widget. In the case of a more complicated widget, such as
the radio button, it may make sense to autogenerate these
procedures for each instance or group of the widget.

7. CONCLUSIONS AND FUTURE WORK
In conclusion, RAPID allows Ada programmers to add a
GUI to their programs in a very simple and portable way.
The code that is generated will run on any of the many
platforms that support Tcl/Tk (including Windows,
Macintosh, and Unix machines). Also, the GUI design
tool uses a very intuiti ve visual process to create the
desired interface. The portabilit y of the resultant code sets
RAPID apart from similar products, such as SAGE-ST [8],
the Aonix GUI Builder [2] and the proposed CLAW
Application Builder [3] (CLAW also claims to be
“portable,” but this portabilit y refers to its use with
different compilers, not on different platforms).

Since RAPID is freeware and will run on a variety of
computers, this makes it an attractive tool for use in an
educational setting. At a recent SIGCSE conference, it
was pointed out that CS curricula should address human-
computer interface issues and visual programming [9].
RAPID provides a good vehicle for exploring these issues
with students, and also further demonstrates the utilit y of
Ada both as a commercial-use language and a teaching
language.

Additionally, the source for RAPID is available for
download via ftp from the Internet (see
ftp://ftp.usafa.af.mil/pub/dfcs/carli sle/usafa/rapid/index.ht
ml). This provides an opportunity for others to contribute
to the product by adding additional widgets or additional
functionalit y to the existing widgets. We also intend to
continue to improve the product based on our observations
from using it, and input from others. Since RAPID uses
the object-oriented features of Ada 95 in its design, adding
widgets is a straightforward process consisting of creating
a new type and overloading the appropriate methods. The
RAPID design process also greatly speeds expansion via
bootstrapping and code reuse.

8. ACKNOWLEDGMENTS
The authors wish to acknowledge Doug Michel and the
referees, whose insightful comments improved the final
form of this paper.

9. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques, and Tools, Addison-Wesley,
1986.

[2] Aonix Inc. Object Ada, 1997.

[3] R. Brukardt and T. Moran. “CLAW, a High Level,
Portable, Ada 95 Binding for Microsoft Windows,”
Tri-Ada ’97, pp. 91-104, ACM, 1997.

[4] C. Comar, G. Dismukes, and F. Gasperoni. “Targeting
GNAT to the Java Virtual Machine,” Tri-Ada ’97, pp.
149-161, ACM, 1997.

[5] E. Foster-Johnson. Graphical Applications with Tcl &
Tk, Second Edition, M&T Books, 1997.

[6] J. Gosling, B. Joy, G. Steele. The Java Language
Specifi cation, Addison-Wesley, 1996.

[7] J. Ousterhout. Tcl and the Tk Toolkit, Addison-
Wesley, 1994

[8] SAGE-ST. http://sageftp.inel.gov/sage/homepage.htm

[9] SIGCSE Town Meeting, Atlanta GA, February 1998.

[10] T. Westley, “TASH: A Free Platform-Independent
Graphical User Interface Development Toolkit for
Ada,” Tri-Ada ’96, pp. 165-178, ACM, 1996.

[11] N. Wirth, “The design of a Pascal compiler,”
Software--Practice and Experience, vol. 1, no. 4, pp.
309-333.

